Proprotein Convertases Process and Thereby Inactivate Formylglycine-generating Enzyme*

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proprotein Convertases Process Pmel17 during Secretion*

Pmel17 is a melanocyte/melanoma-specific protein that traffics to melanosomes where it forms a fibrillar matrix on which melanin gets deposited. Before being cleaved into smaller fibrillogenic fragments the protein undergoes processing by proprotein convertases, a class of serine proteases that typically recognize the canonical motif RX(R/K)R↓. The current model of Pmel17 maturation states that...

متن کامل

Function and Structure of a Prokaryotic Formylglycine-generating Enzyme*S⃞

Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we d...

متن کامل

Proprotein convertases: lessons from knockouts.

The physiological role of the subtilisin/kexin-like proprotein convertases (PCs) in rodents has been examined through the use of knockout mice. This review will summarize the major in vivo defects that result from the disruption of the expression of their genes. This includes abnormal embryonic development, hormonal disorder, infertility, and/or modified lipid/sterol metabolism. Members of the ...

متن کامل

Copper is a Cofactor of the Formylglycine‐Generating Enzyme

Formylglycine-generating enzyme (FGE) is an O2 -utilizing oxidase that converts specific cysteine residues of client proteins to formylglycine. We show that CuI is an integral cofactor of this enzyme and binds with high affinity (KD =of 10-17  m) to a pair of active-site cysteines. These findings establish FGE as a novel type of copper enzyme.

متن کامل

Molecular Basis for Multiple Sulfatase Deficiency and Mechanism for Formylglycine Generation of the Human Formylglycine-Generating Enzyme

Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biological Chemistry

سال: 2013

ISSN: 0021-9258

DOI: 10.1074/jbc.m112.405159